首页> 外文OA文献 >Does median filtering truly preserve edges better than linear filtering?
【2h】

Does median filtering truly preserve edges better than linear filtering?

机译:中值滤波是否真的比线性滤波更好地保留边缘?

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Image processing researchers commonly assert that "median filtering is betterthan linear filtering for removing noise in the presence of edges." Using astraightforward large-$n$ decision-theory framework, this folk-theorem is seento be false in general. We show that median filtering and linear filtering havesimilar asymptotic worst-case mean-squared error (MSE) when the signal-to-noiseratio (SNR) is of order 1, which corresponds to the case of constant per-pixelnoise level in a digital signal. To see dramatic benefits of median smoothingin an asymptotic setting, the per-pixel noise level should tend to zero (i.e.,SNR should grow very large). We show that a two-stage median filtering usingtwo very different window widths can dramatically outperform traditional linearand median filtering in settings where the underlying object has edges. In thistwo-stage procedure, the first pass, at a fine scale, aims at increasing theSNR. The second pass, at a coarser scale, correctly exploits the nonlinearityof the median. Image processing methods based on nonlinear partial differentialequations (PDEs) are often said to improve on linear filtering in the presenceof edges. Such methods seem difficult to analyze rigorously in adecision-theoretic framework. A popular example is mean curvature motion (MCM),which is formally a kind of iterated median filtering. Our results on iteratedmedian filtering suggest that some PDE-based methods are candidates torigorously outperform linear filtering in an asymptotic framework.
机译:图像处理研究人员通常断言“在存在边缘的情况下,中值滤波比线性滤波要好于消除噪声”。使用简单的大型决策理论框架,通常认为该民间定理是错误的。我们显示,当信噪比(SNR)为1阶时,中值滤波和线性滤波具有相似的渐近最坏情况均方误差(MSE),这对应于数字信号中恒定的每像素噪声水平的情况。为了在渐近设置中看到中值平滑的巨大好处,每像素噪声水平应该趋于零(即SNR应该非常大)。我们显示了使用两个非常不同的窗口宽度的两阶段中值滤波可以在基础对象具有边缘的设置中显着优于传统的线性和中值滤波。在此两阶段过程中,第一遍以较小的规模旨在提高SNR。在较粗的尺度上,第二遍正确地利用了中位数的非线性。人们常说基于非线性偏微分方程(PDE)的图像处理方法可以在存在边缘的情况下对线性滤波进行改进。这种方法似乎很难在决策理论框架中进行严格分析。一个流行的例子是平均曲率运动(MCM),它正式是一种迭代的中值滤波。我们在迭代中值滤波上的结果表明,一些基于PDE的方法是在渐近框架中性能明显优于线性滤波的候选方法。

著录项

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号